55楼jiangying
(要干的事情太多。时间太少)
发表于 2012-6-29 22:01
只看此人
一下摘至丘成桐在北师大的讲话
(二)平面几何提供了中学期间唯一的逻辑训练
平面几何的学习是我个人数学生涯的开始。在中学二年级学习平面几何,第一次接触到简洁优雅的几何定理,使我赞叹几何的美丽。欧氏《几何源本》流传两千多年,是一本流传之广仅次于《圣经》的著作。这是有它的理由的。它影响了整个西方科学的发展。17世纪,牛顿的名著《力学原理》的想法,就是由欧氏几何的推理方法来构想的。用三个力学原理推导星体的运行,开近代科学的先河。到近代,爱因斯坦的统一场论的基本想法是用欧氏几何的想法构想的。
平面几何所提供的不单是漂亮而重要的几何定理,更重要的是它提供了在中学期间唯一的逻辑训练,是每一个年轻人所必需的知识。平面几何也提供了欣赏数学美的机会。一个很有名的例子,江泽民主席在澳门濠江中学提出的五点共圆的问题。我第一次听说觉得非常有意思,很多读者对江主席这个问题都很感兴趣,都想从基本定理出发推导这个定理。最近我很惊讶地听说,很多数学教育家们坚持不教证明,原因是学生们不容易接受这种思考。诚然,从一个没有逻辑思想训练的学生,到接受这种训练是有代价的。怎么样训练逻辑思考是比中学学习其他学科更为重要的。将来无论你是做科学家,是做政治家,还是做一个成功的商人,都需要有系统的逻辑训练,我希望我们中学把这种逻辑训练继续下去。中国科学的发展都与这个有关。
明朝利玛窦与徐光启翻译了《几何原本》这本书,徐光启认为这本书的伟大在于一环扣一环,能够将数学的真理解释清楚明了,是了不起的著作。开始时中国数学家不能接受这种证明的方法,甚至到了清朝康熙年间,几何只讲定理的内容不讲证明,影响了中国近代科学的发展。
几何学影响近代科学的发展,包括工程学、物理学等,其中一个极为重要的概念就是对称。希腊人喜爱柏拉图多面体,就是因为它们具有极好的对称性。他们甚至把它们与宇宙的五个元素联系起来:
△火——正四面体
△土——正六面体
△气——正八面体
△水——正二十面体
△正十二面体代表第五元素,乃是宇宙的基本要素。
这种解释大自然的方法虽然并不成功,但是对称的观念却自始至终地左右了科学的发展,并终于演化成群的观念。到20世纪时,它提供了高能物理的计算以及基本观点的形成,这个概念今天已经贯穿到现代数学与物理及其他自然科学和工程应用等许多领域。
我个人认为,即便在目前应试教育的非理想框架下,有条件的、好的学生也应该在中学时期就学习并掌握微积分及群的基本概念,并将它们运用到对中学数学和物理等的学习和理解中去。牛顿等人因为物理学的需要而发现了微积分。而我们中学物理课为什么难教难学,恐怕主因就是要避免用到微积分和群论,并为此而绞尽脑汁,千方百计。这等于是背离了物理学发展的自然的和历史的规律。
至于三角代数方程、概率论和简单的微积分都是重要的学科,这对于以后想学理工科或经济金融的学生都极为重要。.