发新话题
打印【有16个人次参与评价】

[数学] 姜老师在线——老姜写的第一篇小说——螳螂捕蝉,黄雀在后(#397)

本主题被作者加入到个人文集中

回复 #100 hellendeng 的帖子

大部分是不考的。但竞赛毕竟不同于升学考试,超纲有时是在所难免的。.

TOP

请问姜老师:初中数学都有哪些正规的有份量的竞赛?这些竞赛大约在什么时间举行?谢谢!.

TOP

回复 #102 男孩爸爸 的帖子

每年4月份有两个全国初中竞赛,每年12月份上海初中竞赛。从“含金量”来说,后者要大大高于前者,因为大部分高中在特招学生时,是参照这一次竞赛成绩的,等到4月份竞赛成绩出来,直升的名额都已满了,考得再好,大部分都要看别人脸色了。.

TOP

回复 #102 男孩爸爸 的帖子

补充一下,我刚才回答的是初三官方组织的。

预备班初一还有华杯赛,预备班初一初二有希望杯,初三还有民间性质的中环杯,含金量都差了一大截。.

TOP

回复 #103 老姜 的帖子

谢谢姜老师的回答!4月份的是否就是全国初中数学联赛和全国初中数学竞赛?这两个竞赛分别有没有初赛?12月份的上海的就是“宇振杯”数学竞赛吧?另外初一和初二的希望杯、中环杯、华杯赛,因为到了初三都没有竞赛了,是不是即使在初二得奖了,对直升高中也没有作用了?.

TOP

回复 #104 老姜 的帖子

明白了。初中数学竞赛主要就是备战官方的初三三赛,而且全国的两赛还要在初二就拿到奖才有份量,民间三赛属于顺带参与。再次感谢!.

TOP

回复 #106 男孩爸爸 的帖子

三个初三竞赛都只比一次。两个全国竞赛分两张卷子(选择填空一张,解答题一张),但是在同一个半天完成的。.

TOP

.

TOP

我翻阅了一下您以前的帖子,很多和数学有关,也算是热心人士,向您学习。.

TOP

回复 #109 老姜 的帖子

谢谢姜老师,看了这个贴子,改变了我对奥数的看法。以后是否让儿子学这个,要看他的天资了.

TOP

回复 #110 applepie_2005 的帖子

理智而又负责任的家长,对孩子的培养应该量力而行,尽力而为。

鼓掌。.

TOP

请问姜老师,最近对九宫图比较感兴趣,请问这种游戏有规律好寻吗?还是纯粹就是排列与推理?
谢谢.

TOP

回复 #112 dongdong 的帖子

这在数学里叫做幻方,九宫格属于三阶幻方,还有四阶幻方,五阶幻方,等等等等。

如果您确实对此感兴趣,可以在搜索引擎上键入“幻方”二字,相信您会找到你喜欢的东西的。个人认为,幻方除了漂亮,对学习数学的意义不是很大。现在小学二年级课本里就有幻方的拓展内容,有的孩子很喜欢,有的觉得很吃力,教师们认为,对这个年龄阶段的孩子,幻方要求总体来说还太高了。.

TOP

回复 #112 dongdong 的帖子

幻方国内外都有专门研究的人,兴趣使然。我书橱里就有一本这方面的专著,但说老实话,书摆在那里,却没有很好的钻研过,所以也说不出个道道来。.

TOP

回复 #111 老姜 的帖子

感谢您的鼓励。我觉得你这样的贴子才是真正的普及教育的贴子说实话以前我还是挺反感奥数和思维这样的课程和培训的,现在明白一些它的价值所在了。再去好好看看前面的贴子.

TOP

请问姜老师,现在曹光标小学是否还开设奥数班?是三年级的开始报名的吗?.

TOP

回复 #116 小新妈 的帖子

转移阵地了,在大木桥路那里。.

TOP

回复 #116 小新妈 的帖子

三年级开始报名,要考试的。.

TOP

回复 #114 老姜 的帖子

谢谢,是我自己突发兴趣,想找到规律。.

TOP

好象有人说,能用计算机完成的东西,其实不用非要七拐八拐去算了.还是做些对人类真有帮助和品德和环保教育更有用些,反对无特长的孩子挤上奥数桥,浪费了本该游戏的时间!!!.

TOP

不好意思,我家小儿要升一年级,我到现在没有搞清楚,奥数是小学的必需课程吗?为什么要学?学了对升学有什么用?.

TOP

“反对无特长的孩子挤上奥数桥,浪费了本该游戏的时间!!!”——这句话说得精彩极了。

但如果因此而一并剥夺了在数学上有特长的孩子学习数学的权利,似乎同样是一种犯罪。

我们学习加减乘除,并非因为计算器不会计算。

同样,我们进行一些看似繁琐的动脑筋训练,也并非因为计算机的无能。

但计算器、计算机再厉害,都无法替代数学对孩子思维的训练。

并请记住,计算器、计算机再厉害,都是由人类研制开发的,而且,可以肯定地说,那些研制者,十有八九学过高等数学。



[ 本帖最后由 老姜 于 2006-8-11 15:11 编辑 ].

TOP

回复 #121 兰花草 的帖子

奥数并非学生的必修课。对智力比较好的学生来说,学习它,可以使他们变得思维更敏捷,思考问题更全面。

应该看到,大多数奥数学得好的孩子,思维能力都强于同龄人,难怪他们会成为更高一级学校重点抢夺的对象。

但我们反对千军万马过奥数桥的做法。家长应该清醒地评估自己孩子的数学学习能力,可以上的,扶上马送一程;不能上的,千万不要勉为其难。.

TOP

回复 #1 老姜 的帖子

请教一道题目怎样思考:
一楼梯共有10级,如果规定每次只能跨上一级或两级,要登上第十级,共有多少种不同的走法.(老师给的答案是256种)
谢谢赐教.

TOP

正确答案是89种。

一般的,一楼梯共有n级台阶,如果规定每次只能跨上1级或2级,要登上第n级,共有F(n)种不同的走法,则数列F(n)恰为从第二项开始的斐波那契数列:1,2,3,5,8,13,21,34,55,89,…….

TOP

有家长在短信中提出如下问题:

今年女儿升预初,从三年级开始在浙江中路少年报学奥数,没有中断过.其间,老师希望孩子再集训,参加比赛,因为当初让女儿学奥数,只是让她的思维能力有所提高,对初中的理化学习有所帮助,没有参加过比赛,不过还是打算让她一直学到初二,看了你对奥数的高见,发现我对女儿的规划有误区.既然女儿对数学有兴趣,应该让她参加比赛,或许让她到更好的培训学校去学习,如果得奖更好,这对孩子在四大名校初中的自主招生中有更多筹码.能不能请你对女儿的奥数学习再提出一些意见,选择学校,到初二比赛要注意的地方等.

因为比较具有代表性公开回复如下:

如果能确认您的孩子喜欢数学,那么,尝试着做以下的事情:
1,今年10月有一个上海中学生业余数学学校(即上海中学生奥数学校)考试,建议去参加这次考试,一来可以检阅您的孩子的实力,二来可以有机会搭上一班车,使您的孩子能面对面接受市一级竞赛教练的比较专业的培训。
2,为您的孩子物色一个小课老师,开开小灶。
3,超前学习,用2年时间学完初中4年内容。
4,加强平面几何的训练。
5,初二开始加强综合问题的思考和训练。
6,争取初二就去参加初三竞赛。.

TOP

姜老师:

看了你的回答很有启发,不过还有一点想向你请教,我们今年读预初,如果请老师开小灶的话,是上奥数的内容还是提前上初中的数学.

谢谢!.

TOP

回复 #127 rosemary008 的帖子

如果让我来教,我会比较系统的先学教材里的东西,并同步补充与竞赛有关的内容,至于补充到什么程度,其实是很有讲究的,在这里一言难尽啊。

换一个老师,他会怎么安排和处理,就不得而知了。

下棋有“走一步看三步”的说法,意思是说,做人做事要有长期打算,只有这样,才能在竞争中将主动权掌握在自己手里。如果你遇到的老师大局观比较好,那么,他在对您孩子的培养时,会有一个比较周密的考虑的。.

TOP

回男孩爸爸:

我不知道您的孩子多大了。个人认为,初中代数中因式分解,乘法公式的应用,一元二次方程、二次函数及其图象,各类方程、不等式的解法等问题都比较重要。初中几何应加强竞赛类定理的学习和应用。如果有可能,在初三4月份前,高中数学应学习函数、三角(仅限于公式的应用)、解析几何(学到圆)、数列,初三4月份以后,所有竞赛结束了,继续学习余下的高中课程,为进入高中作准备。如果孩子由老师指点,那么不容易偏离方向。如果是自学,最忌讳的就是WU囵吞枣,半生不熟。.

TOP

回peteryang:

孩子是父母的生命的延续。同样为人父,我非常理解您的心情。为你的孩子物色一个好一点的老师,相信她会有更大的进步。.

TOP

回复 #125 老姜 的帖子

谢谢姜老师.是孩子抄错答案了,答案是89.但你的方法我还是不懂.我是这样算的:
按1,1,1,1,1,1,1,1,2登楼,有9种排列.
按1,1,1,1,1,1,2,2登楼,有28种排列
按1,1,1,1,2,2,2登楼,有35种排列
按1,1,2,2,2,2登楼,有15种排列
按2,2,2,2,2登楼,1种,全是1级登楼1种
合计89种
孩子现在是小学3升4年级,我是学过高等数学的也忘了什么斐波那契数列,更何况他?谢谢指教..

TOP

回复 #125 老姜 的帖子

姜老师:排列组合问题我认为比较难,叫3升4的孩子理解起来有点困难,有什么好的方法吗?.

TOP

回复 #131 天承妈妈 的帖子

让3升4的孩子理解这样的问题,难度确实不小,但这就是现状,中国奥数的现状。

对这一年龄段的孩子来说,排列组合的最佳方法是穷举法,其次是利用加法、乘法原理进行一些简单问题的计算,如果硬要塞给他们一大堆计算公式,那是荒唐和蛮不讲理的。

您对本题的解释是合乎孩子认知水平的。建议您一开始可以将N取得比较小,如N=1,2,3,……,然后找到相应的结果,让孩子找出答案的规律,猜出N=10的结果,再用穷举法解释,这样做,体现了数学中从特殊到一般的思想。

但孩子给出的猜想,其实是在考察有限的数学现象的基础上给出无限的结论,这在数学上叫做“不完全归纳”,其结论是不一定可靠的,所以,从道理上说,对N=10的结论的进一步解释是必须的。

但从N=1开始试验,数字比较简单,容易让孩子逐步悟出道理,这为后面的N=10的结论的得到提供思维的铺垫,所以,前面的启发是不可忽视的,这也是教小孩子数学的一个很好的经验与策略。

但因此而上升到一般的高度,给出斐波那契数列的结论,孩子只能感受,没有必要让他知道所以然了。

上述观点仅供参考。.

TOP

回复 #133 老姜 的帖子

由衷地感谢您,您真是古道热肠兼具真才实学,对我启发很大,以后肯定还会有请教的时候,先一并感谢..

TOP

回复 #134 天承妈妈 的帖子

呵呵,不用客气。.

TOP

回复 #135 老姜 的帖子

请教2道题目:
1) 数1447,1005,1231有一些共同的特征,它们都以1开头,含有两个相同数字,且都是四位数,问这样的数共有多少个?

2) 四年级有六个班,由3位数学老师分任这六个班的数学课,每位老师任2个班,现要对这3位老师任课的班进行分配,共有多少种不同的方法?以下解法正确吗?思考第一个老师可在6个班中选2个班级,第二个老师可在4个班中选2个班.
解:6*5/2*4*3/2=90
谢谢.

TOP

(1)符合题意的四位数有11AB,1A1B,1AB1,1AAB,1ABA,1BAA共6种类型,其中A、B是互不相同的数字,且只能从0,2,3,……,9这9个数字里取,所以,符合题意的四位数共有(9*8)*6=432个。

(2)您的答案是正确的。设(n,m)表示从n个不同元素里任取m个元素并成一组的组数,则本问题的答案可以表示为(6,2)*(4,2)*(2,2)=90种。.

TOP

咨询

老师你好!我家小宁今年是三升四,在浦东一所还算不错的小学上学,目前一直坚持在外面上奥数辅导班,谈不上特别好,只是数学成绩目前在自己班里是前五名的,毕竟她自己还是比较喜欢这门课的!很想请教一下老师,四年级除了希望杯还有什么奥数竞赛呢?要准备什么特别的辅导资料吗?请抽空答复我好吗?谢谢!.

TOP

回复 #137 老姜 的帖子

清楚了,谢谢..

TOP

回复 #138 janeqin97 的帖子

在上海,小学奥数比赛已被叫停。所以,比较官方比赛只有两个来自北方的比赛——华杯赛(5年级)和希望杯(主办方都是北京的)。有关教材本帖前面已有所涉及,此处不再赘述。

当孩子还比较小的时候,建议家长不要急于让他过早参加比赛。先把内功练好,厚积薄发,这样比较好。即使不参加比赛,以后在升学时,面对中学招生时的选拔(市教委是叫停了,变相的有吗?:)),您的孩子一定会游刃有余,从容应对的。.

TOP

谢谢姜老师!根据的你的提示,我已经下载了4,5年级的奥数题了!非常感谢!!.

TOP

老姜的平面几何世界(http://pingmianjihe.blog.sohu.com)开张啦!!!

它为平面几何爱好者提供了一个讨论问题的平台,将不定期更新。

它也会及时提供一些竞赛的试题(如今年上海市中学生业余数学学校的入学试题)与一些竞赛的得奖名单。




[ 本帖最后由 老姜 于 2006-8-24 07:33 编辑 ].

TOP

谢谢,以后一定会用到.

TOP

回复 #143 Steven妈 的帖子

平面几何是初中数学的“重头戏”,可要好好地学。.

TOP

回复 #126 老姜 的帖子

咱小女今年升初中预备班,数学还算可以,比较听话,我让她完成的初中预备班华师大奥数题,她基本能完成。有些题让她看了前面练习后,自己试着做,感觉自己教她讲解起来比较费劲。不知姜老师有何对策?另外对您的初二考初三数学题有点异议,会否拔苗助长,理解力跟的上吗?你的奥数难度要超出华师大的奥数《一课一练》吧。咱小女是九月生,已经超前了,我觉得理解力在四五年纪才感觉提高很多。

[ 本帖最后由 yingyingba 于 2006-8-25 16:13 编辑 ].

TOP

回复 #145 yingyingba 的帖子

1,奥数是数学中的“旁门左道”,大部分教师都不能对付,更何况是并不专业的家长呢。

2,家长能辅导小学奥数,不等于家长就能辅导中学奥数

3,初二考初三,重在练兵,并非有什么指标的。优秀的学生,初二前就已经将初中的内容都加深学完了,要不然充其量只是奥数的“票友”,玩玩而已。.

TOP

LELE123问:某年的九月一日是星期一,过了200320032003.....(2004个2003)天后是星期几?

回答如下:

因为200320032003可以被7整除,而2003……2003(2004个2003)由668个200320032003拼成,所以2003……2003(2004个2003)也能被7整除。这一结论告诉我们,2003……2003(2004个2003)天后依然是星期一。

然而,这只是理论上的答案。天文学家告诉我们,据推测,太阳已经燃烧了46亿年,它还将继续燃烧50亿年。50亿年后,太阳将由恒星变成红巨星,进而变成白矮星,这时,我们所在的地球,也将不复存在了。

那么,2003……2003(2004个2003)天究竟有多少年呢?我约莫估计了一下,这个数字将大于10^8003亿年。到那时,地球早已毁灭,我们所谓的“星期一”又在哪里呢?

当然,从积极的意义上说,在地球毁灭之前,或许人类已经有能力移居太空其他的星球了。到那时,人类所居住的星球上的“一年”是否还是365天,“一周”是否还是7天?谁能告诉我们?.

TOP

引用:
原帖由 零零八 于 2006-8-3 08:33 发表
请教姜老师一个问题:

将1至2006的所自然数由小到大连在一起写,可得12345678910……20052006,求此数除以225所得的余数。

只需要给答案就可以了,我只想核对一下,谢谢。
姜老师,这道题目你给的答案似乎有点问题
人家的题目是一个很大的数字求余数
而你是把2005个数字先求和然后再求余数

请帮忙抽空再给个符合原题意的解答给大家参考.

TOP

首先感谢你对我的质疑,关注有时也是一种关爱。

这个问题的答案没有问题。讲一讲我大概的思路:

在初等数论里,有这样一条性质:如果正整数a、b、c满足a=b+c,且b能被正整数d整除,则a除以d所得的余数,等于c除以d所得的余数。

现在,我们想办法将12345678910……200420052006(它相当于我刚才提到的a)写成b+c的形式,其中b是一个能被225 (它相当于我刚才提到的d)整除的正整数,c是一个比较小的正整数(这样,在计算c除以225的余数时就会比较容易些)。

在这里,我取b=12345678910……200420040000,c=12006。由原文所给的方法知,12345678910……200420040000能被225整除,则12006除以225所得的余数(容易知道,这个余数为81),就是12345678910……200420052006除以225所得的余数。

我所用的方法在数学里叫“化归”,即将一个较为复杂的问题转化为一个较为简单的等价的问题来解决。这种方法,贯穿于数学发展的始终。.

TOP

   根据偶小孩学奥数的经验看   对平时的数学反应能力提高是很大帮助.

TOP

发新话题