7楼cool爸爸
(随风飘去。)
发表于 2006-6-18 11:44
显示全部帖子
解这道题的关键是确定穿几号球衣的人开始时各发了几个球。如果我们分别用三个□表示三个人开始时发的球数,就应该有如下等式:
2□+4□+5□=23
其中第一个方格表示穿1号球衣的人开始时发给的球数,第二个方格表示穿2号球衣的人开始时发给的球数,第三个方格表示穿3号球衣的人开始时发给的球数。这三个方格中分别应该填入1、2、3三个数字。
由于算式的结果23是个奇数,而无论第一个和第二个方格中填入什么整数,2□和4□都是偶数,所以5□必须是奇数,所以第三个方格中应填入奇数1或3。
如果第三个方格中填入1,则等式变为:
2□+4□=18,即:□+2□=9
这时,在两个方格中只能填2和3的情况下,无论怎样都不能使等式成立,说明第三个方格中不能填1,只能填3,也就是
2□+4□+5×3=23
即:2□+4□=8,化简得到:□+2□=4
这时就很容易地得到:2+2×1=4
所以就得到结论:穿1号球衣的人开始时发了2个球,穿2号球衣的人开始时发了1个球,穿3号球衣的人开始时发了3个球,而题目已知开始时发给甲1个球,所以甲穿2号球衣。同时也就知道了乙穿1号球衣,丙穿3号球衣。.