丁mm 2009-8-2 17:41
求助一道题
设x、y是实数,且x²+xy+y²=3,求x²-xy+y²的取值范围。哪位家长帮帮忙吧,谢谢。.
童爸0928 2009-8-3 15:56
[quote]原帖由 [i]家有爱女心切切[/i] 于 2009-8-2 18:46 发表 [url=http://ww123.net/baby/redirect.php?goto=findpost&pid=5573355&ptid=4663989][img]http://ww123.net/baby/images/common/back.gif[/img][/url]
貌似1到9之间,不敢确信。 [/quote]
答案是1到9之间
一种方法是:
3=x^2+xy+y^2 <= x^2+y^2+1/2(X^2+y^2)=3/2(x^2+y^2) 得 x^2+y^2>=2
则 x^2-xy+y^2=2x^2+2y^2-3>=1
(1)当|xy|>=0时,x^2-xy+y^2<=x^2+xy+y^2=3
(2)当|xy|<=时,有0<=(|x|-|y|)^2=x^2-2|xy|+y^2=x^2+xy+y^2-|xy|=3-|xy|
得|xy|<=3
x^2-xy+y^2=3-2xy=3+2|xy|<=9
所以1<= x^2-xy+y^2 <=9
这个题学了三角函数,会比较简单的做出来
由x^2+xy+y^2=3得 (x+y/2)^2+(3/4)y^2=3
设 x+y/2=√3sinA,(√3/2)y=√3,则有y=2cosA, x=√3sinA-conA=2sin(A-30度)
x^2-xy+y^2=3-2xy=3-8sin(A-30度)cosA=3-4(sin(2A)-1/2)=5-4sin2A
所以1<=x^2-xy+y^2<=9.