福星高照 2007-12-28 20:21
求教数学题(初一)
求和: 3 / 1x2x4 + 5/ 2x3x5 + 7/3x4x6 +…+ 2n+1 / 3x4x6.
福星高照 2007-12-28 20:23
错了'应该是3 / 1x2x4 + 5/ 2x3x5 + 7/3x4x6 +…+ 2n+1 / n(n+1)(n+3).
JessieWei 2008-1-4 23:00
可对通项进行分析:
2n+1 / n(n+1)(n+3)
=[n+(n+1)]/n(n+1)(n+3)
=n/n(n+1)(n+3) +(n+1)/n(n+1)(n+3)
=1/(n+1)(n+3)+1/n(n+3)
=1/2*[1/(n+1) - 1/(n+3)]+1/3*[1/n - 1/(n+3)]
所以原式=1/2*[1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+1/6-1/8+1/7-1/9+~~~+1/(n+1) - 1/(n+3)]+
1/3*[1-1/4+1/2-1/5+1/3-1/6+1/4-1/7+1/5-1/8+1/6-1/9+~~~+1/n - 1/(n+3)]
=1/2*[1/2+1/3 - 1/(n+2) - 1/(n+3)] +1/3*[1+1/2+1/3 - 1/(n+1) - 1/(n+2) - 1/(n+3) ]
=1/2*[5/6 - 1/(n+2) - 1/(n+3)] +1/3*[11/6- 1/(n+1) - 1/(n+2) - 1/(n+3) ]
=37/36+ (12n^2+45n+37)/6(n+1)(n+2)(n+3).